Measles elimination status

Source:European Regional Verification Commission for Measles and Rubella Elimination (RVC) meeting report: www.euro.who.int/6thRVC

National plan of action

Source: Measles and rubella elimination Annual Status Update report, 2016 ND= Data not available

Measles and rubella immunization schedule, 2016

	Vaccine	Schedule	Year of introduction	
MCV1	MMR	12 months	MCV2	1996
MCV2	MMR	$15-24$ months	RCV	1973
Measles vaccination in school				ND

Source: Immunization schedule, WHO, Data and Statistics, Immunization Monitoring and Surveillance (http://mww.who.int/immunization/monitoring_surveillance/data/en//
MMR = measles-mumps-rubella-containing vaccine; MCV1 = first dose measles-containing vacccine; MCV2 = second dose measles-containing vaccine; RCV = rubella-containing vaccine

Definition used for an outbreak

Rubella elimination status

2015 endemic
 2016 endemic

Source:European Regional Verification Commission for Measles and Rubella Elimination (RVC) meeting report: www.euro.who.int/6thRVC

Demographic information, 2016

Total population	8379477
< 1 year old	85760
< 5 years old	428839

Source: World Population Prospects: The 2015 Revision, New York, United Nations

Measles and rubella cases and immunization coverage, 2007-2016

Source: Disease incidence and immunization coverage, WHO, Data and Statistics
Immunization Monitoring and Surveilance
(http://www.who.int/immunization/monitoring_surveillance/data/en/)
MCV1 = first dose of measles-containing vaccine
MCV2= second dose of measles-containing vaccine

Source: Measles and rubella elimination Annual Status Update report, 2016
Confirmed measles cases by month of onset, 2012-2016

[^0]Measles cases by first subnational level, 2016

Source: Measles and rubella elimination Annual Status Update report, 2016

Measles genotypes by first subnational level, 2016

Source: MeaNS 2016

Note: The dots in the maps are placed randomly within the administrative regions
Map disclaimer: The boundaries and names shown and the designations used on the maps do not imply the expression of any opinion whatsoever on the part of the World Health Organization concerning the legal status of any country. territory, city or area or of its authorities, or concerning the delimitation of its frontiers or boundaries. Dotted and dashed lines on maps represent approximate border lines for which there may not yet be full agreement.

Measles cases by age group and vaccination status, 2016

Source: Measles and rubella elimination Annual Status Update report, 2016

Sources of infection, 2016

	Measles	Rubella
Imported	12	0
Import-related	43	0
Unknown/ Not reported	3	0
Endemic	7	0

Source: Measles and rubella elimination Annual Status Update report, 2016

Information on CRS, 2016

Source: Measles and rubella elimination Annual Status Update report, 2016
CRS = congenital rubella syndrome

Measles incidence, epidemiologic and virologic characteristics, 2012-2016

	Suspected measles cases	Confirmed measles cases				$\begin{gathered} \text { Discarded } \\ \text { as } \\ \text { non- } \\ \text { measles } \end{gathered}$	Measles incidence	Genotypes detected
		Laboratory	Epilinked	Clincally	Total			
2012	ND	28	5	12	45	ND	4.7	D4
2013	212	113	21	42	176	33	19.7	D8
2014	68	14	2	7	23	45	1.7	B3, D8, H1
2015	65	33	5	3	41	30	3.5	B3, D8, 11
2016	101	52	9	4	65	36	6.4	B3, D8

Source: Measles and rubella elimination Annual Status Update report, 2012-2016
Incidence calculated per 1 million population

Rubella incidence, epidemiologic and virologic characteristics, 2012-2016

	Suspected rubella cases	Confirmed measles cases				Discarded as non- rubella	Rubella incidence	Genotypes detected
2012		3	0	0	3	ND	0.4	ND
2013		6	0	0	6	35	0.6	ND
2014		4	0	0	4	35	0.5	ND
2015	26	3	0	0	3	23	0.4	ND
2016	0	0	0	0	0	2	0	NA

Source: Measles and rubella elimination Annual Status Update report, 2012-2016
Incidence calculated per 1 million population
ND $=$ Data not available: $N A=$ Not applicable
$N D=$ Data not available; $N A=$ Not applicable

Measles surveillance and laboratory performance indicators, 2012-2016

	Discarded non- measles rate	\% 1st sub- national unit with $\geqslant 2$ discarded cases	\% cases with adequate laboratory investiga- tion	\% origin of infection known	$\#$ specimen tested for measles	\% positive for measles	Rate of viral detection	\% WHO and proficient labs
2012	0.2	ND	80%	86.3%	ND	ND	ND	ND
2013	0.3	0%	78.9%	92%	ND	ND	25%	ND
2014	0.2	0%	86.4%	91.2%	57	66.7%	80%	ND
2015	0.1	0%	91.8%	82.9%	56	76.8%	33.3%	100%
2016	0.8	11.5%	94.6%	95.4%	88	73.9%	50%	100%

Source: ASU 2012-2016, MeaNS 2012-2016 and laboratory accreditation results 2012-2016
$N D=$ Data not available; $N A=$ Not applicable
A proficient laboratory is WHO accredited and/or has an established quality assurance programme with oversight by a WHO accredited laboratory

Rubella surveillance and laboratory performance indicators, 2012-2016

	Discarded non- rubella rate	\% 1st sub- national unit with discarded cases	\% cases with adequate laboratory investiga- tion	\% origin of infection known	specimen sested for rubella	\% positive for rubella	Rate of viral detection	\% WHO and proficient labs
2012	NA	ND	97.8%	66.7%	ND	ND	ND	ND
2013	NA	NA	82.9%	50%	ND	ND	ND	ND
2014	NA	NA	92.3%	75%	36	100%	ND	ND
2015	NA	NA	88.5%	66.7%	23	95.7%	ND	100%
2016	NA	NA	NA	NA	28	92.9%	NA	100%

Source: ASU 2012-2016, RubeNS 2012-2016 and laboratory accreditation results 2012-2016
ND = Data not available: $N A=$ Not applicable
A proficient laboratory is WHO accredited and/or has an established quality assurance programme with oversight by a WHO accredited laboratory

RVC comments, based on 2016 reporting

The Regional Verification Commission for Measles and Rubella Elimination (RVC) commends the National Verification Committee (NVC), national health authorities and public health system on interruption of endemic measles transmission in Switzerland. The RVC commends the national health authorities and encourages them to continue with awareness campaigns for vaccination against measles to close immunity gaps among adults. However, the RVC urges improvement of the quality of measles and rubella surveillance and increasing of MRCV2 at subnational (cantonal) level. The RVC urges the national health authorities and public health system to strengthen activities in line with WHO resolutions and guidelines to achieve and document elimination of rubella as well.

Source: Regional Verification Commission for Measles and Rubella Elimination (RVC) meeting report (www.euro.who.int/6thRVC)

Surveillance performance indicators and targets

a. Rate of discarded cases: at least 2 discarded measles or rubella cases per 100000 population
b. \% cases with adequate laboratory investigation: $\geqslant 80 \%$
c. \% origin of infection known: $\geqslant 80 \%$
d. Rate of viral detection: $\geqslant 80 \%$

[^0]: Source: CISID2 2016

